Part Number Hot Search : 
527S303M NDUCTOR BCM1125H SHD114 KDS112E PINAA22 SY802 N4002
Product Description
Full Text Search
 

To Download OA2NP34S Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  this is information on a product in full production. march 2014 docid025993 rev 2 1/31 o a 1 n p, o a 2 n p, oa4np low power, rail-to-rail input and output, cmos op amp datasheet - production data features ? low power: 580 na typ. per channel at 25 c at v cc = 1.8 v ? low supply voltage: 1.5 v - 5.5 v ? unity gain stable ? rail-to-rail input and output ? gain bandwidth product: 8 khz typ. ? low input bias current: 5 pa max at 25 c ? high tolerance to esd: 2 kv hbm ? industrial temperature range: -40 c to +85 c benefits ? 42 years of typical equivalent lifetime (oa1np) if supplied by a 220 mah coin type lithium battery ? tolerance to power supply transient drops ? accurate signal conditi oning of high impedance sensors ? fast desaturation applications ? wearable ? fitness and healthcare ? medical instrumentation description the oa1np, oa2np, oa4np series of cmos operational amplifiers offer a low power consumption of 580 na typical and 750 na maximum per channel when supplied by 1.8 v. combined with a supply voltage range of 1.5 v to 5.5 v, these features allow the oa1np, oa2np, oa4np op amp series to be efficiently supplied by a coin type lithium battery or a regulated voltage in low power applications. the oa1np, oa2np, oa4np are respectively the single, dual and quad operational amplifier versions. the 8 khz gain bandwidth of these devices make them ideal for wearable, fitness and healthcare and sensors signal conditioning applications. 6& 0lql62 ')1[ 4)1[ 6lqjoh 2$13 4xdg 2$13 '8$/ 2$13 table 1. device summary order codes temperature range packages packing marking oa1np22c -40 c to +85 c sc70-5 tape and reel k22 oa2np22q dfn8 2x2 k24 OA2NP34S miniso8 k160 oa4np33q qfn16 3x3 k160 www.st.com
contents oa1np, oa2np, oa4np 2/31 docid025993 rev 2 contents 1 package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 absolute maximum ratings and operating c onditions . . . . . . . . . . . . . 4 3 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4 long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.5 schematic optimization aiming for low power . . . . . . . . . . . . . . . . . . . . . 19 4.6 pcb layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.7 using the oa1np, oa2np, oa4np series with sensors . . . . . . . . . . . . . 21 4.8 fast desaturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.9 using the oa1np, oa2np, oa4np series in comparator mode . . . . . . . 22 4.10 esd structure of oa1np, oa2np, oa4np series . . . . . . . . . . . . . . . . . . 23 5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1 sc70-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2 dfn8 2x2 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3 miniso8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.4 qfn16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
docid025993 rev 2 3/31 oa1np, oa2np, oa4np package pin connections 31 1 package pin connections figure 1. pin connections for each package (top view) sc70-5 (oa1np) 9&& ,1 287 9&& ,1        miniso8 (oa2np) dfn8 2x2 (oa2np) 9&& 9&& 287 ,1 ,1 287 ,1 ,1 qfn16 3x3 (oa4np) 9&& 9&& 287 ,1 ,1 287 ,1 ,1        
absolute maximum ratings and operat ing conditions oa1np, oa2np, oa4np 4/31 docid025993 rev 2 2 absolute maximum ratings and operating conditions table 2. absolute maximum ratings (amr) symbol parameter value unit v cc supply voltage (1) 1. all voltage values, except the differential volt age are with respect to the network ground terminal. 6 v v id differential input voltage (2) 2. the differential voltage is the non-inverting input term inal with respect to the inverting input terminal. v cc v in input voltage (3) 3. (v cc+ - v in ) must not exceed 6 v, (v in - v cc- ) must not exceed 6 v. v cc- - 0.2 to v cc+ + 0.2 i in input current (4) 4. the input current must be limited by a resistor in series with the inputs. 10 ma t stg storage temperature -65 to +150 c r thja thermal resistance junction to ambient (5)(6) sc70-5 dfn8 2x2 miniso8 qfn16 3x3 5. short-circuits can c ause excessive heating and destructive dissipation. 6. r th are typical values. 205 117 190 45 c/w t j maximum junction temperature 150 c esd hbm: human body model (7) 7. related to esda/jedec js-001 apr. 2010 2000 v mm: machine model (8) 8. related to jedec jesd22-a115c nov.2010 200 cdm: charged device model (9) all other packages except sc70-5 sc70-5 9. related to jedec jesd22-c101-e dec. 2009 1000 900 latch-up immunity (10) 10. related to jedec jesd78c sept. 2010 200 ma table 3. operating conditions symbol parameter value unit v cc supply voltage 1.5 to 5.5 v v icm common mode input voltage range v cc- - 0.1 to v cc+ + 0.1 t oper operating free air temperature range -40 to +85 c
docid025993 rev 2 5/31 oa1np, oa2np, oa4np electrical characteristics 31 3 electrical characteristics v cc + = 1.8 v with v cc - = 0 v, v icm = v cc /2, t amb = 25 c, and r l = 1 m ? connected to v cc /2 (unless otherwise specified) table 4. electrical characteristics symbol parameter conditions min. typ. max. unit dc performance v io input offset voltage -3 0.1 3 mv -40 c < t< 85 c -3.4 3.4 ? v io / ? t input offset voltage drift -40 c < t< 85 c 5 ? v/c ? v io long-term input offset voltage drift t = 25 c (1) 0.18 i io input offset current (2) 15 pa -40 c < t< 85 c 30 i ib input bias current (2) 15 -40 c < t< 85 c 30 cmr common mode rejection ratio 20 log ( ? v icm / ? v io ) v icm = 0 to 0.6 v, v out = v cc /2 65 85 db -40 c < t< 85 c 65 v icm = 0 to 1.8 v, v out = v cc /2 55 74 -40c < t< 85 c 55 a vd large signal voltage gain v out = 0.3 v to (v cc+ - 0.3 v) r l = 100 k ? 95 115 -40 c < t< 85 c 95 v oh high level output voltage ? (drop from v cc +) r l = 100 k ? 40 mv -40 c < t< 85 c 40 v ol low level output voltage r l = 100 k ? 40 -40 c < t< 85 c 40 i out output sink current v out = v cc , v id = -200 mv 4 5 ma -40 c < t< 85 c 4 output source current v out = 0 v, v id = + 200 mv 4 5 -40 c < t< 85 c 4 i cc supply current ? (per channel) no load, v out = v cc /2 580 750 na -40 c < t< 85 c 800 ac performance gbp gain bandwidth product r l = 1 m ? , c l = 60 pf 8 khz f u unity gain frequency 8 ? m phase margin 60 degrees g m gain margin 10 db ? v month ---------------------------
electrical characteristic s oa1np, oa2np, oa4np 6/31 docid025993 rev 2 sr slew rate (10 % to 90 %) r l = 1 m ? , c l = 60 pf v out = 0.3 v to (v cc+ - 0.3 v) 3v/ms e n equivalent input noise voltage f = 100 hz 265 f = 1 khz 265 ? e n low-frequency peak-to- peak input noise bandwidth: f = 0.1 to 10 hz 9 v pp i n equivalent input noise current f = 100 hz 0.64 f = 1 khz 4.4 t rec overload recovery time 100 mv from rail in comparator r l = 100 k ? , v id = v cc -40 c < t< 85 c 30 s 1. typical value is based on the v io drift observed after 1000h at 125 c extrapolated to 25 c using the arrhenius law and assuming an activation energy of 0.7 ev. the operatio nal amplifier is aged in follower mode configuration. 2. guaranteed by design. table 4. electrical characteristics (continued) symbol parameter conditions min. typ. max. unit nv hz ----------- - fa hz ----------- -
docid025993 rev 2 7/31 oa1np, oa2np, oa4np electrical characteristics 31 v cc + = 3.3 v with v cc - = 0 v, v icm = v cc /2, t amb = 25 c, and r l = 1 m ? connected to v cc /2 (unless otherwise specified) table 5. electrical characteristics symbol parameter conditions min. typ. max. unit dc performance v io input offset voltage -3 0.1 3 mv -40 c < t< 85 c -3.4 3.4 ? v io / ? t input offset voltage drift -40 c < t< 85 c 5 ? v/c ? v io long-term input offset voltage drift t = 25 c (1) 0.36 i io input offset current (2) 15 pa -40 c < t< 85 c 30 i ib input bias current (2) 15 -40 c < t< 85 c 30 cmr common mode rejection ratio 20 log ( ? v icm / ? v io ) v icm = 0 to 2.1 v, v out = v cc /2 70 92 db -40 c < t< 85 c 70 v icm = 0 to 3.3 v, v out = v cc /2 60 77 -40 c < t< 85 c 60 a vd large signal voltage gain v out = 0.3 v to (v cc+ - 0.3 v) r l = 100 k ? 105 120 -40 c < t< 85 c 105 v oh high level output voltage (drop from v cc +) r l = 100 k ? 40 mv -40 c < t< 85 c 40 v ol low level output voltage r l = 100 k ? 40 -40 c < t< 85 c 40 i out output sink current v out = v cc , v id = -200 mv 6 9 ma -40 c < t< 85 c 6 output source current v out = 0 v, v id = + 200 mv 8 11 -40 c < t< 85 c 8 i cc supply current (per channel) no load, v out = v cc /2 600 800 na -40 c < t< 85 c 850 ac performance gbp gain bandwidth product r l = 1 m ? , c l = 60 pf 8 khz f u unity gain frequency 8 ? m phase margin 60 degrees g m gain margin 11 db ? v month ---------------------------
electrical characteristic s oa1np, oa2np, oa4np 8/31 docid025993 rev 2 sr slew rate (10 % to 90 %) r l = 1 m ? , c l = 60 pf, v out = 0.3 v to (v cc+ - 0.3 v) 3v/ms e n equivalent input noise voltage f = 100 hz 260 f = 1 khz 255 ? e n low-frequency peak-to- peak input noise bandwidth: f = 0.1 to 10 hz 8.6 v pp i n equivalent input noise current f = 100 hz 0.55 f = 1 khz 3.8 t rec overload recovery time 100 mv from rail in comparator r l = 100 k ? , v id = v cc -40 c < t< 85 c 30 s 1. typical value is based on the v io drift observed after 1000h at 125 c extrapolated to 25 c using the arrhenius law and assuming an activation energy of 0.7 ev. the operatio nal amplifier is aged in follower mode configuration. 2. guaranteed by design. table 5. electrical ch aracteristics (continued) symbol parameter conditions min. typ. max. unit nv hz ----------- - fa hz ----------- -
docid025993 rev 2 9/31 oa1np, oa2np, oa4np electrical characteristics 31 v cc + = 5 v with v cc - = 0 v, v icm = v cc /2, t amb = 25 c, and r l = 1 m ? connected to v cc /2 (unless otherwise specified) table 6. electrical characteristics symbol parameter conditions min. typ. max. unit dc performance v io input offset voltage -3 0.1 3 mv -40 c < t< 85 c -3.4 3.4 ? v io / ? t input offset voltage drift -40 c < t< 85 c 5 ? v/c ? v io long-term input offset voltage drift t = 25 c (1) 1.1 i io input offset current (2) 15 pa -40 c < t< 85 c 30 i ib input bias current (2) 15 -40 c < t< 85 c 30 cmr common mode rejection ratio 20 log ( ? v icm / ? v io ) v icm = 0 to 3.8 v, v out = v cc /2 70 90 db -40 c < t< 85 c 70 v icm = 0 to 5 v, v out = v cc /2 65 82 -40 c < t< 85 c 65 svr supply voltage rejection ratio v cc = 1.5 to 5.5 v, v icm = 0 v 70 90 -40 c < t< 85 c 70 a vd large signal voltage gain v out = 0.3 v to (v cc+ - 0.3 v) r l = 100 k ? 110 130 -40c < t< 85 c 110 v oh high level output voltage (drop from v cc +) r l = 100 k ? 40 mv -40 c < t< 85 c 40 v ol low level output voltage r l = 100 k ? 40 -40 c < t< 85 c 40 i out output sink current v out = v cc , v id = -200 mv 6 9 ma -40 c < t< 85 c 6 output source current v out = 0 v, v id = + 200 mv 8 11 -40 c < t< 85 c 8 i cc supply current (per channel) no load, v out = v cc /2 650 850 na -40 c < t< 85 c 950 ? v month ---------------------------
electrical characteristic s oa1np, oa2np, oa4np 10/31 docid025993 rev 2 ac performance gbp gain bandwidth product r l = 1 m ? , c l = 60 pf 9 khz f u unity gain frequency 8.6 ? m phase margin 60 degrees g m gain margin 12 db sr slew rate (10 % to 90 %) r l = 1 m ? , c l = 60 pf, v out = 0.3 v to (v cc+ - 0.3 v) 3v/ms e n equivalent input noise voltage f = 100 hz 240 f = 1 khz 225 ? e n low-frequency peak-to-peak input noise bandwidth: f = 0.1 to 10 hz 8.1 v pp i n equivalent input noise current f = 100 hz 0.18 f = 1 khz 3.5 t rec overload recovery time 100 mv from rail in comparator r l = 100 k ? , v id = v cc -40 c < t< 85 c 30 s emirr electromagnetic interference rejection ratio (3) v in = -10 dbm, f = 400 mhz 73 db v in = -10 dbm, f = 900 mhz 88 v in = -10 dbm, f = 1.8 ghz 80 v in = -10 dbm, f = 2.4 ghz 80 1. typical value is based on the v io drift observed after 1000h at 125 c extrapolated to 25 c using the arrhenius law and assuming an activation energy of 0.7 ev. the operatio nal amplifier is aged in follower mode configuration. 2. guaranteed by design. 3. based on evaluations performed only in conductive mode. table 6. electrical ch aracteristics (continued) symbol parameter conditions min. typ. max. unit nv hz ----------- - fa hz ----------- -
docid025993 rev 2 11/31 oa1np, oa2np, oa4np electrical characteristics 31 figure 2. supply current vs. supply voltage figure 3. supply current vs. input common mode voltage 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0 3.5 3.5 4.0 4.0 4.5 4.5 5.0 5.0 5.5 5.5 0.0 0.0 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.6 0.6 0.7 0.8 0.8 0.9 1.0 1.0 t=-40c vicm=vout=vcc/2 t=85c t=25c supply current (a) supply voltage (v) 0.0 0.0 0.3 0.3 0.6 0.6 0.9 0.9 1.2 1.2 1.5 1.5 1.8 1.8 2.1 2.1 2.4 2.4 2.7 2.7 3.0 3.0 3.3 3.3 0.0 0.0 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.6 0.6 0.7 0.8 0.8 0.9 1.0 1.0 t=-40c vcc=3.3v, vout=vcc/2 t=85c t=25c supply current (a) input common mode voltage (v) figure 4. supply current in saturation mode fi gure 5. input offset voltage distribution 0 0 25 25 50 50 75 75 100 100 125 125 150 150 175 175 3100 3100 3125 3125 3150 3150 3175 3175 3200 3200 3225 3225 3250 3250 3275 3275 3300 3300 0.0 0.0 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.6 0.6 0.7 0.8 0.8 0.9 1.0 1.0 vcc=3.3v follower configuration temperature 85c/65c/45c/25c/-5c/-40c icc ( ? a) input voltage (mv) -3 -2 -1 0 1 2 3 0 5 10 15 20 25 30 35 40 45 50 vio distribution at t=25c vcc=3.3v, vicm=1.65v population % input offset voltage (mv) figure 6. input offset voltage vs. common mode voltage figure 7. input offset voltage vs. temperature at 3.3 v supply voltage 0.0 0.0 0.3 0.3 0.6 0.6 0.9 0.9 1.2 1.2 1.5 1.5 1.8 1.8 2.1 2.1 2.4 2.4 2.7 2.7 3.0 3.0 3.3 3.3 0.0 0.0 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.6 0.6 0.7 0.8 0.8 0.9 1.0 1.0 t=-40c vcc=3.3v t=85c t=25c input offset voltage (mv) common mode voltage (v) -60 -60 -40 -40 -20 -20 0 020 20 40 40 60 60 80 80 100 100 -5 -5 -4 -4 -3 -3 -2 -2 -1 -1 0 0 1 1 2 2 3 3 4 4 5 5 limit for oaxnp vcc=3.3v, vicm=1.65v input offset voltage (mv) temperature (c)
electrical characteristic s oa1np, oa2np, oa4np 12/31 docid025993 rev 2 figure 8. input offset voltage temperature coefficient distribution figure 9. input bias current vs. temperature at mid v icm -5 -4 -3 -2 -1 0 1 2 3 4 5 0 5 10 15 20 25 30 ? vio/ ? t distribution between t=-40c and 85c for vcc=3.3v, vicm=1.65v population % ? vio/ ? t (v/c) -40 -40 -20 -20 0 020 20 40 40 60 60 80 80 -20 -20 -15 -10 -10 -5 0 0 5 10 10 15 20 20 vcc=3.3v vcc=5v vcc=1.8v vicm=vcc/2 input bias current (pa) temperature (c) figure 10. input bias current vs. temperature at low v icm figure 11. input bias current vs. temperature at high v icm -40 -40 -20 -20 0 020 20 40 40 60 60 80 80 -20 -20 -15 -10 -10 -5 0 0 5 10 10 15 20 20 vcc=3.3v vcc=5v vcc=1.8v vicm=0v input bias current (pa) temperature (c) -40 -40 -20 -20 0 020 20 40 40 60 60 80 80 -20 -20 -15 -10 -10 -5 0 0 5 10 10 15 20 20 vcc=3.3v vcc=5v vcc=1.8v vicm=vcc input bias current (pa) temperature (c) figure 12. output characteristics at 1.8 v supply voltage figure 13. output characteristics at 3.3 v supply voltage 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0 3.5 3.5 4.0 4.0 4.5 4.5 5.0 5.0 5.5 5.5 6.0 6.0 0.0 0.0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 1.6 1.6 1.8 1.8 source vid=0.2v sink vid=-0.2v t=85c t=-40c vcc=1.8v vicm=0.1v t=25c output voltage (v) output current (ma) 0 01 12 23 34 45 56 67 78 89 910 10 0.0 0.0 0.3 0.3 0.6 0.6 0.9 0.9 1.2 1.2 1.5 1.5 1.8 1.8 2.1 2.1 2.4 2.4 2.7 2.7 3.0 3.0 3.3 3.3 source vid=0.2v sink vid=-0.2v t=85c t=-40c vcc=3.3v vicm=0.1v t=25c output voltage (v) output current (ma)
docid025993 rev 2 13/31 oa1np, oa2np, oa4np electrical characteristics 31 figure 14. output characteristics at 5 v supply voltage figure 15. output voltage vs. input voltage close to the rails 0 01 12 23 34 45 56 67 78 89 910 10 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0 3.5 3.5 4.0 4.0 4.5 4.5 5.0 5.0 source vid=0.2v sink vid=-0.2v t=85c t=-40c vcc=5v vicm=0.1v t=25c output voltage (v) output current (ma) 0 0 25 25 50 50 75 75 100 100 125 125 150 150 175 175 3100 3100 3125 3125 3150 3150 3175 3175 3200 3200 3225 3225 3250 3250 3275 3275 3300 3300 0 0 25 25 50 50 75 75 100 100 125 125 150 150 175 175 3100 3100 3125 3125 3150 3150 3175 3175 3200 3200 3225 3225 3250 3250 3275 3275 3300 3300 vcc=3.3v follower configuration temperature 85c/65c/45c/25c/-5c/-40c output voltage (mv) input voltage (mv) figure 16. output saturation with a sine wave on input figure 17. desaturation time -5 -5 0 05 510 10 15 15 20 20 25 25 30 30 35 35 40 40 45 45 50 50 55 55 60 60 0.000 0.000 0.025 0.025 0.050 0.050 0.075 0.075 0.100 0.100 0.125 0.125 3.150 3.150 3.175 3.175 3.200 3.200 3.225 3.225 3.250 3.250 3.275 3.275 3.300 3.300 vout vin vout vin follower configuration, t=25c vcc=3.3v, vin from rail to 300mv from rail vrl=vrail, f=10hz, rl=10m ? , cl=16pf signal amplitude (v) time (ms) 0 01 12 23 34 45 5 -3 -3 -2 -2 -1 -1 0 0 1 1 2 2 3 3 gain=+11, 100k ? /1m ? , vin=3vpp, t=25c vcc=3.3v, vicm=vrl=1.65v rl=10m ? , cl=16pf signal amplitude (v) time (ms) figure 18. phase reversal free figure 19. slew rate vs. supply voltage 0 025 25 50 50 75 75 100 100 125 125 150 150 -2 -2 -1 -1 0 0 1 1 2 2 follower configuration, t=25c vcc=3.3v, vicm=vrl=1.65v rl=10m ? , cl=16pf signal amplitude (v) time (ms) 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0 3.5 3.5 4.0 4.0 4.5 4.5 5.0 5.0 5.5 5.5 -4.0 -4.0 -3.5 -3.5 -3.0 -3.0 -2.5 -2.5 -2.0 -2.0 -1.5 -1.5 -1.0 -1.0 -0.5 -0.5 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0 3.5 3.5 4.0 4.0 vicm=vrl=vcc/2 rl=1m ? , cl=60pf vin from 0.5v to vcc-0.5v sr calculated from 10% to 90% t=-40c t=85c t=25c slew rate (v/ms) vcc (v)
electrical characteristic s oa1np, oa2np, oa4np 14/31 docid025993 rev 2 figure 20. output swing vs. input signal frequency figure 21. triangulation of a sine wave 10 100 1000 10000 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0 3.5 3.5 4.0 4.0 follower configuration vcc=3.3v, vin=3.3vpp vicm=vrl=1.65v rl=10m ? , cl=16pf t=25c output swing (v) frequency (hz) 0 01 12 23 34 4 -3 -3 -2 -2 -1 -1 0 0 1 1 2 2 3 3 follower configuration, vin=3vpp, f=1khz vcc=3.3v, vicm=vrl=1.65v rl=10m ? , cl=16pf, t=25c signal amplitude (v) time (ms) figure 22. large signal response at 3.3 v supply voltage figure 23. small signal re sponse at 3.3 v supply voltage 0 01 12 23 34 45 56 67 78 89 910 10 -2 -2 -1 -1 0 0 1 1 2 2 follower configuration, t=25c vcc=3.3v vicm=vrl=1.65v rl=10m ? , cl=16pf signal amplitude (v) time (ms) 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.0 -35 -30 -30 -25 -20 -20 -15 -10 -10 -5 0 0 5 10 10 15 20 20 25 30 30 35 follower configuration, t=25c vcc=3.3v vicm=vrl=1.65v rl=10m ? , cl=16pf signal amplitude (mv) time (ms) figure 24. overshoot vs. capacitive load at 3.3 v supply voltage figure 25. phase margin vs. capacitive load at 3.3 v supply voltage 0 050 50 100 100 150 150 200 200 0 0 3 5 5 8 10 10 13 15 15 18 20 20 23 25 25 28 30 30 vcc=3.3v, vicm=vrl=1.65v follower configuration 50mvpp step rl=10m ? , t=25c overshoot (%) capacitive load (pf) 0 050 50 100 100 150 150 200 200 250 250 0 0 5 10 10 15 20 20 25 30 30 35 40 40 45 50 50 55 60 60 65 70 70 vcc=3.3v, vicm=vrl=1.65v gain 101 : rg=10k ? , rf=1m ? rl=10m ? t=25c phase margin (deg) capacitive load (pf)
docid025993 rev 2 15/31 oa1np, oa2np, oa4np electrical characteristics 31 figure 26. bode diagram for different feedback values figure 27. bode diagram at 1.8 v supply voltage 10 100 1000 10000 -20 -15 -10 -5 0 5 10 15 20 gain (db) frequency (hz) feedback : 1m ? //47pf feedback : 1m ? vcc=3.3v, vicm=1.65v, t=25c gain=1 rl=10m ? , cl=16pf, vrl=vcc/2 feedback : 100k ? 10 100 1000 10000 -45 -30 -15 0 15 30 45 -180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180 gain (db) frequency (hz) phase gain vcc=1.8v, vicm=0.9v g=101 (10k ? /1m ? ) rl=10m ? , cl=60pf, vrl=vcc/2 t=85c t=-40c t=25c phase () figure 28. bode diagram at 3.3 v supply voltage f igure 29. bode diagram at 5 v supply voltage 10 100 1000 10000 -45 -30 -15 0 15 30 45 -180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180 gain (db) frequency (hz) phase gain vcc=3.3v, vicm=1.65v g=101 (10k ? /1m ? ) rl=10m ? , cl=60pf, vrl=vcc/2 t=85c t=-40c t=25c phase () 10 100 1000 10000 -45 -30 -15 0 15 30 45 -180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180 gain (db) frequency (hz) phase gain vcc=5v, vicm=2.5v g=101 (10k ? /1m ? ) rl=10m ? , cl=60pf, vrl=vcc/2 t=85c t=-40c t=25c phase () figure 30. gain bandwidth product vs. input common mode voltage figure 31. gain vs. input common mode voltage 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0 0 0 1 2 2 3 4 4 5 6 6 7 8 8 9 10 10 vcc=3.3v, vicm=vrl gain 101 : rg=10k ? , rf=1m ? rl=10m ? , cl=60pf t=25c measured at 20db gbp (khz) vicm (v) 10 -2 10 -1 10 0 10 1 10 2 10 3 10 100 recommended resistor to place between the output of the op-amp and the capacitive load vcc=3.3v, vicm=1.65v follower configuration riso (k ? ) capacitive load (nf)
electrical characteristic s oa1np, oa2np, oa4np 16/31 docid025993 rev 2 figure 32. noise at 1.8 v supply voltage in follower configuration figure 33. noise at 3.3 v supply voltage in follower configuration 10 100 1000 10000 100000 10 100 1000 10000 vicm=1.5v vicm=0.9v vcc=1.8v follower configuration t=25c output voltage noise density (nv/vhz) frequency (hz) 10 100 1000 10000 100000 10 100 1000 10000 vicm=3v vicm=1.65v vcc=3.3v follower configuration t=25c output voltage noise density (nv/vhz) frequency (hz) figure 34. noise at 5 v supply voltage in follower configuration figure 35. noise amplitude on 0.1 to 10 hz frequency range figure 36. channel separation on oa2n p figure 37. channel separation on oa4np 10 100 1000 10000 100000 10 100 1000 10000 vicm=4.7v vicm=2.5v vcc=5v follower configuration t=25c output voltage noise density (nv/vhz) frequency (hz) 0 01 12 23 34 45 56 67 78 89 910 10 -20 -20 -15 -10 -10 -5 0 0 5 10 10 15 20 20 vcc=3v, vicm=1.65v bandpass filter : 0.1hz to 10hz t=25c noise amplitude (uv) time (s) 10 100 1k 10k 0 0 20 20 40 40 60 60 80 80 100 100 120 120 140 140 v cc =5v v icm =2.5v v in =2vpp t=25c channel separation (db) frequency (hz) 10 100 1k 10k 0 0 20 20 40 40 60 60 80 80 100 100 120 120 140 140 ch1 - ch2 ch1 - ch3 ch1 - ch4 v cc =5v v icm =2.5v v in =2vpp t=25c channel separation (db) frequency (hz)
docid025993 rev 2 17/31 oa1np, oa2np, oa4np application information 31 4 application information 4.1 operating voltages the oa1np, oa2np and oa4np series of low power op amp can operate from 1.5 v to 5.5 v. their parameters are fully specified at 1.8 v, 3.3 v, and 5 v supply voltages and are very stable in the full v cc range. additionally, main specifications are guaranteed on the industrial temperature range from -40 to +85 c. 4.2 rail-to-rail input the oa1np, oa2np and oa4np series is built with two complementary pmos and nmos input differential pairs. thus, these devices have a rail-to-rail input, and the input common mode range is extended from v cc- - 0.1 v to v cc+ + 0.1 v. the devices have been designed to prevent phase reversal behavior. 4.3 input offset voltage drift over temperature the maximum input voltage drift over the temperature variation is defined as the offset variation related to the offset value measured at 25 c. the operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. the signal chain accuracy at 25 c can be compensated during production at application level. the ma ximum input voltage drift over temperature enables the system designer to anticipate the effects of temperature variations. the maximum input voltage drift over temperature is computed in equation 1 . equation 1 with t = -40 c and 85 c. the datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a c pk (process capability in dex) greater than 2. ? v io ? t ----------- - max v io t ?? v io 25 ? c ?? ? t25 ? c ? -------------------------------------------------- =
application information oa1np, oa2np, oa4np 18/31 docid025993 rev 2 4.4 long term input offset voltage drift to evaluate product reliability, two ty pes of stress acceleration are used: ? voltage acceleration, by changing the applied voltage ? temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature. the voltage acceleration has been defined bas ed on jedec results, and is defined using equation 2 . equation 2 where: a fv is the voltage acceleration factor ? is the voltage acceleration constant in 1/v, constant technology parameter ( ? = 1) v s is the stress voltage used for the accelerated test v u is the voltage used for the application the temperature acceleration is driven by the arrhenius model, and is defined in equation 3 . equation 3 where: a ft is the temperature acceleration factor e a is the activation energy of the technology based on the failure rate k is the boltzmann constant (8.6173 x 10 -5 evk -1 ) t u is the temperature of the die when v u is used ( ? k) t s is the temperature of the die under temperature stress ( ? k) the final acceleration factor, a f , is the multiplication of the voltage acceleration factor and the temperature acceleration factor ( equation 4 ). equation 4 a f is calculated using the temperature and volt age defined in the mission profile of the product. the a f value can then be used in equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration. a fv e ? v s v u ? ?? ? = a ft e e a k ------ 1 t u ------ 1 t s ------ ? ?? ?? ? = a f a ft a fv ? =
docid025993 rev 2 19/31 oa1np, oa2np, oa4np application information 31 equation 5 to evaluate the op amp reliability, a fo llower stress condition is used where v cc is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by jedec rules). the v io drift (in v) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see equation 6 ). equation 6 the long term drift parameter ( ? v io ), estimating the reliability pe rformance of th e product, is obtained using the ratio of the v io (input offset voltage value) dr ift over the square root of the calculated number of months ( equation 7 ). equation 7 where v io drift is the measured drift value in the specified test conditions after 1000 h stress duration. 4.5 schematic optimization aiming for low power to benefit from the full performance of the the oa1np, oa2np and oa4np series, the impedances must be maximized so that current consumption is not lost where it is not required. for example, an aluminum electrolytic capacitanc e can have significantly high leakage. this leakage may be greater than the current cons umption of the op amp. for this reason, ceramic type capacitors are preferred. for the same reason, big resistor values should be used in the feedback loop. however, there are three main limitations to be considered when choosing a resistor. 1. when the the oa1np, oa2np and oa4np series is used with a sensor: the resistance connected between the sensor and the input must remain much higher than the impedance of the sensor itself. 2. noise generated: a100 k ? resistor generates 40 , a bigger resistor value generates even more noise. 3. leakage on the pcb: leakage can be generat ed by moisture. this can be improved by using a specific coating process on the pcb. months a f 1000 h ? 12 months 24 h 365.25 days ? ?? ? ? = v cc maxv op with v icm v cc 2 ? == ? v io v io drift months ?? ------------------------------ = nv hz ----------- -
application information oa1np, oa2np, oa4np 20/31 docid025993 rev 2 4.6 pcb layout considerations for correct operation, it is advised to add 10 nf decoupling capacitors as close as possible to the power supply pins. minimizing the leakage from sensitive high impedance nodes on the inputs of the oa1np, oa2np, oa4np series can be performed with a guarding technique. the technique consists of surrounding high impedance tracks by a low im pedance track (the ring). the ring is at the same electrical potential as the high impedance node. therefore, even if some parasitic impedance ex ists between the tracks, no leakage current can flow through them as they are at the same potential (see figure 38 ). figure 38. guarding on the pcb oaxnp
docid025993 rev 2 21/31 oa1np, oa2np, oa4np application information 31 4.7 using the oa1np, oa2np, oa4np series with sensors the oa1np, oa2np, oa4np series has mos inputs, thus input bias currents can be guaranteed down to 5 pa maximum at ambient temperature. this is an important parameter when the operational amplifie r is used in combination with high impedance sensors. the oa1np, oa2np, and oa4np series is perfectly suited for trans-impedance configuration as shown in figure 39 . this configuration allows a current to be converted into a voltage value with a gain set by the user. it is an ideal choice for portable electrochemical gas sensing or photo/uv sensing applications. the oa1np, oa2np, oa4np series, using trans-impedance configuration, is able to pr ovide a voltage value based on the physical parameter sensed by the sensor. electrochemical gas sensors the output current of electrochemical gas sensors is generally in the range of tens of na to hundreds of ? a. as the input bias current of the oa1np, oa2np, and oa4np is very low (see figure 9 , figure 10 , and figure 11 ) compared to these current values, the oa1np, oa2np, oa4np series is well adapted for use with the electrochemical sensors of two or three electrodes. figure 40 shows a potentiostat (electronic hardware required to control a three electrode cell) schematic using the oa1np, oa2np, and oa4np. in such a configuration, the devices minimize leakage in the reference electrode compared to the current being measured on the working electrode. figure 39. trans-impeda nce amplifier schematic 5   *$066* 9 uhi 5, 9 uhi , 6hqvru hohfwurfkhplfdo skrwrglrgh89
application information oa1np, oa2np, oa4np 22/31 docid025993 rev 2 figure 40. potentiostat schematic using the oa1np (or oa2np) 4.8 fast desaturation when the oa1np, oa2np, and oa4np, operational amplifiers go into saturation mode, they take a short period of time to recover, typica lly thirty microseconds. when recovering after saturation, the oa1np, oa2np, and oa4np seri es does not exhibit any voltage peaks that could generate issues (such as fals e alarms) in the application (see figure 17 ). this is because the internal gain of the amplifier decrea ses smoothly when the output signal gets close to the v cc+ or v cc- supply rails (see figure 15 and figure 16 ). thus, to maintain signal integrity, the user should take care that the output signal stays at 100 mv from the supply rails. with a trans-impedance schematic, a voltage reference can be used to keep the signal away from the supply rails. 4.9 using the oa1np, oa2np, oa4np series in comparator mode the oa1np, oa2np, and oa4np series can be used as a comparator. in this case, the output stage of the device always oper ates in saturation mode. in addition, figure 4 shows the current consumption is not bigger and even decreases smoothly close to the rails. the oa1np, oa2np, and oa4np are obviously operational amplifiers and are therefore optimized to be used in linear mode. we recommend to use the ts88 series of nanopower comparators if the primary function is to perform a signal comparison only. 2$13   *$066* 9 uhi 2$13   9 uhi
docid025993 rev 2 23/31 oa1np, oa2np, oa4np application information 31 4.10 esd structure of oa1np, oa2np, oa4np series the oa1np, oa2np and oa4np are protected against electrostatic discharge (esd) with dedicated diodes (see figure 41 ). these diodes must be considered at application level especially when signals applied on the input pins go beyond the power supply rails (v cc+ or v cc- ). figure 41. esd structure current through the diodes must be limited to a maximum of 10 ma as stated in table 2 . a serial resistor or a schottky diode can be used on the inputs to improve protection but the 10 ma limit of input current must be strictly observed. 2$13  *$066* 
package information oa1np, oa2np, oa4np 24/31 docid025993 rev 2 5 package information in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? specifications, grade definitions a nd product status are available at: www.st.com . ecopack ? is an st trademark.
docid025993 rev 2 25/31 oa1np, oa2np, oa4np package information 31 5.1 sc70-5 package mechanical data figure 42. sc70-5 package mechanical drawing table 7. sc70-5 package mechanical data ref dimensions millimeters inches min typ max min typ max a 0.80 1.10 0.315 0.043 a1 0.10 0.004 a2 0.80 0.90 1.00 0.315 0.035 0.039 b 0.15 0.30 0.006 0.012 c 0.10 0.22 0.004 0.009 d 1.80 2.00 2.20 0.071 0.079 0.087 e 1.80 2.10 2.40 0.071 0.083 0.094 e1 1.15 1.25 1.35 0.045 0.049 0.053 e 0.65 0.025 e1 1.30 0.051 l 0.26 0.36 0.46 0.010 0.014 0.018 < 0 8 0 8 seating plane gauge plane dimensions in mm side view top view coplanar leads
package information oa1np, oa2np, oa4np 26/31 docid025993 rev 2 5.2 dfn8 2x2 pack age information figure 43. dfn8 2x2 package mechanical drawing table 8. dfn8 2x2 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a 0.70 0.75 0.80 0.028 0.030 0.031 a1 0.00 0.02 0.05 0.000 0.001 0.002 b 0.15 0.20 0.25 0.006 0.008 0.010 d 2.00 0.079 e 2.00 0.079 e 0.50 0.020 l 0.045 0.55 0.65 0.018 0.022 0.026 n8 h / %277209,(:   3lq,'  3,1,1'(;$5($  (  & $ $ 3/$1( 6($7,1* 7239,(:  &  & [ [ ' 3,1,1'(;$5($ e sofv  &  & $ % % $ & 6,'(9,(: *$06&%
docid025993 rev 2 27/31 oa1np, oa2np, oa4np package information 31 5.3 miniso8 package information figure 44. miniso8 package mechanical drawing table 9. miniso8 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a 1.1 0.043 a1 0 0.15 0 0.006 a2 0.75 0.85 0.95 0.030 0.033 0.037 b 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 d 2.80 3.00 3.20 0.11 0.118 0.126 e 4.65 4.90 5.15 0.183 0.193 0.203 e1 2.80 3.00 3.10 0.11 0.118 0.122 e 0.65 0.026 l 0.40 0.60 0.80 0.016 0.024 0.031 l1 0.95 0.037 l2 0.25 0.010 k 0 8 0 8 ccc 0.10 0.004
package information oa1np, oa2np, oa4np 28/31 docid025993 rev 2 5.4 qfn16 package information figure 45. qfn16 package mechanical drawing table 10. qfn16 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a 0.80 0.90 1.00 0.032 0.035 0.039 a1 0.02 0.05 0.001 0.002 a3 0.2 0.008 b 0.18 0.23 0.30 0.007 0.009 0.012 d3.00 0.118 d2 1.00 1.15 1.25 0.039 0.045 0.049 e3.00 0.118 e2 1.00 1.15 1.25 0.039 0.045 0.049 e 0.5 0.02 k0.2 0.008 l 0.30 0.40 0.50 0.012 0.016 0.020 r0.09 0.006
docid025993 rev 2 29/31 oa1np, oa2np, oa4np package information 31 figure 46. qfn16 3x3 footprint recommendation table 11. footprint data footprint data ref millimeters inches a 4.00 0.158 b c 0.50 0.020 d 0.30 0.012 e 1.00 0.039 f 0.70 0.028 g 0.66 0.026
revision history oa1np, oa2np, oa4np 30/31 docid025993 rev 2 6 revision history table 12. document revision history date revision changes 28-feb-2014 1 initial release 06-mar-2014 2 update section 4.8 on page 22
docid025993 rev 2 31/31 oa1np, oa2np, oa4np 31 ? please read carefully: information in this document is provided solely in connection with st products. stmicroelectronics nv and its subsidiaries (?st ?) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described he rein at any time, without notice. all st products are sold pursuant to st?s terms and conditions of sale. purchasers are solely responsible for the choice, selection and use of the st products and services described herein, and st as sumes no liability whatsoever relating to the choice, selection or use of the st products and services described herein. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. i f any part of this document refers to any third party products or services it shall not be deemed a license grant by st for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoev er of such third party products or services or any intellectual property contained therein. unless otherwise set forth in st?s terms and conditions of sale st disclaims any express or implied warranty with respect to the use and/or sale of st products including without limitation implied warranties of merchantability, fitness for a parti cular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. st products are not designed or authorized for use in: (a) safety critical applications such as life supporting, active implanted devices or systems wi th product functional safety requirements; (b) aeronautic applications; (c) automotive applications or environments, and/or (d) aerospace applications or environments. where st products are not designed for such use, the purchaser shall use products at purchaser?s sole risk, even if st has been informed in writing of such usage, unless a product is expressly designated by st as being intended for ?automotive, automotive safety or medical? industry domains according to st product design specifications. products formally escc, qml or jan qualified are deemed suitable for use in aerospace by the corresponding governmental agency. resale of st products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by st for the st product or service described herein and shall not create or extend in any manner whatsoev er, any liability of st. st and the st logo are trademarks or registered trademarks of st in various countries. information in this document supersedes and replaces all information previously supplied. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners. ? 2014 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - philippines - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of OA2NP34S

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X